Exercise 99

A balloon is rising at a constant speed of $5 \mathrm{ft} / \mathrm{s}$. A boy is cycling along a straight road at a speed of $15 \mathrm{ft} / \mathrm{s}$. When he passes under the balloon, it is 45 ft above him. How fast is the distance between the boy and the balloon increasing 3 s later?

Solution

Draw a schematic of the boy and the balloon at a certain time after he passes under the balloon.

The aim is to find $d r / d t$ when $t=3$. The Pythagorean theorem relates the sides of a right triangle.

$$
r^{2}=x^{2}+y^{2}
$$

Differentiate both sides with respect to time by using the chain rule.

$$
\begin{aligned}
& \frac{d}{d t}\left(r^{2}\right)=\frac{d}{d t}\left(x^{2}+y^{2}\right) \\
& 2 r \cdot \frac{d r}{d t}=2 x \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t}
\end{aligned}
$$

Divide both sides by 2 .

$$
r \frac{d r}{d t}=x \frac{d x}{d t}+y \frac{d y}{d t}
$$

Divide both sides by r.

$$
\begin{aligned}
\frac{d r}{d t} & =\frac{x \frac{d x}{d t}+y \frac{d y}{d t}}{r} \\
& =\frac{x \frac{d x}{d t}+y \frac{d y}{d t}}{\sqrt{x^{2}+y^{2}}} \\
& =\frac{x(15)+y(5)}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

At $t=3$, the distance the boy has travelled is $x=x_{0}+v_{x} t=0+15(3)=45$ feet, and the distance the balloon has travelled is $y=y_{0}+v_{y} t=45+5(3)=60$ feet. Therefore, the rate that the distance between the boy and the balloon is increasing when $t=3 \mathrm{~s}$ is

$$
\left.\frac{d r}{d t}\right|_{t=3}=\frac{(45)(15)+(60)(5)}{\sqrt{(45)^{2}+(60)^{2}}}=13 \frac{\mathrm{ft}}{\mathrm{~s}} .
$$

